Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin A.
نویسندگان
چکیده
The action of Clostridium difficile toxins A and B depends on inactivation of host small G-proteins by glucosylation. Cellular inositol hexakisphosphate (InsP6) induces an autocatalytic cleavage of the toxins, releasing an N-terminal glucosyltransferase domain into the host cell cytosol. We have defined the cysteine protease domain (CPD) responsible for autoprocessing within toxin A (TcdA) and report the 1.6 A x-ray crystal structure of the domain bound to InsP6. InsP6 is bound in a highly basic pocket that is separated from an unusual active site by a beta-flap structure. Functional studies confirm an intramolecular mechanism of cleavage and highlight specific residues required for InsP6-induced TcdA processing. Analysis of the structural and functional data in the context of sequences from similar and diverse origins highlights a C-terminal extension and a pi-cation interaction within the beta-flap that appear to be unique among the large clostridial cytotoxins.
منابع مشابه
Inositol Hexakisphosphate-Induced Autoprocessing of Large Bacterial Protein Toxins
Large bacterial protein toxins autotranslocate functional effector domains to the eukaryotic cell cytosol, resulting in alterations to cellular functions that ultimately benefit the infecting pathogen. Among these toxins, the clostridial glucosylating toxins (CGTs) produced by Gram-positive bacteria and the multifunctional-autoprocessing RTX (MARTX) toxins of Gram-negative bacteria have distinc...
متن کاملAuto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity.
The action of Clostridium difficile toxins A and B depends on processing and translocation of the catalytic glucosyltransferase domain into the cytosol of target cells where Rho GTPases are modified. Here we studied the processing of the toxins. Dithiothreitol and beta-mercaptoethanol induced auto-cleavage of purified native toxin A and toxin B into approximately 250/210- and approximately 63-k...
متن کاملAutocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate.
Clostridium difficile toxins A and B are major virulence factors responsible for induction of pseudomembranous colitis and antibiotic-associated diarrhea in men. The toxins possess a multidomain structure and only the N-terminal glucosyltransferase domain, which inactivates Rho GTPases by glucosylation, is translocated into the cytosol of target cells. Processing of the toxin occurs by autocata...
متن کاملThe Combined Repetitive Oligopeptides of Clostridium difficile Toxin A Counteract Premature Cleavage of the Glucosyl-Transferase Domain by Stabilizing Protein Conformation
Toxin A (TcdA) and B (TcdB) from Clostridium difficile enter host cells by receptor-mediated endocytosis. A prerequisite for proper toxin action is the intracellular release of the glucosyltransferase domain by an inherent cysteine protease, which is allosterically activated by inositol hexaphosphate (IP6). We found that in in vitro assays, the C-terminally-truncated TcdA1-1065 was more efficie...
متن کاملRational design of inhibitors and activity-based probes targeting Clostridium difficile virulence factor TcdB.
Clostridium difficile is a leading cause of nosocomial infections. The major virulence factors of this pathogen are the multi-domain toxins TcdA and TcdB. These toxins contain a cysteine protease domain (CPD) that autoproteolytically releases a cytotoxic effector domain upon binding intracellular inositol hexakisphosphate. Currently, there are no known inhibitors of this protease. Here, we desc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 284 33 شماره
صفحات -
تاریخ انتشار 2009